
 CS202 Final
 2021 Fall

 Answers Only

 Question 1

 The answer is D . Straight from the definition of big O.

 Question 2

 ● h[1] = 13
 ● h[2] = 4
 ● h[5] = 15
 ● h[6] = 23
 ● h[11] = 22
 ● h[12] = 19
 ● h[24] = 71
 ● h[25] = 81

 Jacob:

 1. 16
 2. 12
 3. 18
 4. 25
 5. 41
 6. 30
 7. 99
 8. 54

 Questions 3-14
 These came from a bank and were randomly ordered. Here they are:

 ● O(1) . Sets don't insert duplicates, so the set size is always 1.
 ● O(n 2)
 ● O(log n)
 ● O(n) -- that's how long it takes to traverse the multiset. I also gave credit to O(m log n) ,

 which you can achieve using upper_bound . We'll learn more about that next semester.
 ● O(n) - Tree traversal.
 ● O(log n)
 ● O(n) - That's what's special about a heap.
 ● O(log n)
 ● O(log n)
 ● O(n log n)
 ● O(n). It's O(1) to get to the 3rd element, and O(1) for each insertion.
 ● O(n). push_front() on a deque is O(1).
 ●

 1

 CS202 Final
 2021 Fall

 Answers Only
 Question 15

 In the following blank, please enter a preorder printing of the nodes. You can just enter all of the
 letters, in order, without spaces: TBHDENLSUW

 And in the following blank, please enter a postorder printing of the nodes: EDLSNHBWUT

 Question 16

 Questions 17 through 20

 Answers : J, 2.

 Answers : P, 1.

 Answers : Y, 1.

 Answers : U, 2.

 Question 21

 The destructor needs to typecast s to an instance of MyZippy * . Then it should delete any
 integers allocated in the vector. Finally, it should delete the instance of MyZippy * . You don't
 need to clear the vector, because that is done automatically in the last delete call:

 Zippy::~Zippy()
 {
 size_t i;
 MyZippy *z;

 z = (MyZippy *) s;
 for (i = 0; i < z->v.size(); i++) delete z->v[i];
 delete z;

 }

 2

 CS202 Final
 2021 Fall

 Answers Only
 Question 22

 Dnode *Dlist::Begin()
 {
 return sentinel->flink;

 }

 Dnode *Dlist::End()
 {
 return sentinel;

 }

 void Dlist::Insert_Before(const string &s, Dnode *n)
 {
 Dnode *newnode, *prev;

 newnode = new Dnode;
 prev = n->blink;

 newnode->s = s;
 newnode->flink = n;
 newnode->blink = prev; // this could be newnode->blink = n->blink;
 n->blink = newnode;
 prev->flink = newnode; // this could be newnode->blink->flink = newnode;
 size++;

 }

 Question 23

 double rank(const Treenode *n)
 {
 double total, average;
 size_t i;

 /* Base case is when a node has no children. */

 if (n->children.size() == 0) return weight;

 /* Otherwise, compute the average rank of the children. */
 total = 0;
 for (i = 0; i < n->children.size(); i++) {
 total += rank(n->children[i]);

 }
 average = total / (double) n->children.size();

 /* Return the maximum */
 return (weight > average) ? weight : average;

 }

 Question 24

 11 12 10
 68 88 19 97 84 91 50

 3

