Suppose that the program to the right is compiled into the
executable a.out. In questions 1 through 3, please tell me
the output of that command when typed into the shell.

Question 1: echo B | ./a.out
Question 2: echo 2A | ./a.out
Question 3: echo BAD | ./a.out

Question 4: If the string entered on standard input has n
characters, what is the big-O running time of the program?

Question 5: If the string entered on standard input has n
characters, what is the big-O memory usage of "the stack"?

Bonus Question: Suppose the parameter s were not a
reference parameter. Then what is the big-O memory usage
of "the stack"?

#include <iostream>
using namespace std;

void a(const string &s, int index)

{

if (index == s.size()) return;
cout << s[index];

if (s[index] == 'A') cout << "1";
a(s, index+1);

cout << s[index];

}

int main()

{

string s;

cin >> s;
a(s, 0);
cout << endl;
return 0;

Answers to today's clicker questions:

Question 1: This makes one recursive call, which returns instantly, so it simply prints 'B' twice. The answer is
HBB n .

Question 2: Let's go through what happens here:

a("AA",0) first prints 'A'".

a("AA",0) then prints 'l', because character 0 is 'A'.
a("AA",0) calls a("AA",1).

a("AA",1) prints 'A'

a("AA",1) then prints 'l', because character 1 is 'A".
a("AA",1) calls a("AA",2).

a("AA",2) returns instantly.

a("AA",1) prints 'A' again, and then returns.
a("AA",0) prints 'A' again, and then returns.

So the answer is "ATAT1AA".
Question 3: Let's go through what happens:

e a("BAD",0) first prints 'B'.

a("BAD",0) calls a("BAD",1).

a("BAD",1) prints 'A" and then 'l".
a("BAD",1) calls a("BAD",2).

a("BAD",2) prints 'D'.

a("BAD",2) calls a("BAD",3).

a("BAD" 3) returns instantly.

a("BAD",2) prints 'D' again and then returns.
a("BAD",1) prints 'A' again and then returns.
a("BAD",0) prints 'B' again and then returns.

The answer is "BAIDDAB"
Question 4: There are n recursive calls, and each call to a() does O(1) work. The answer is O(n).

Question 5: The stack contains local variables and procedure parameters for each recursive call. There are no
local variables, and two procedure parameters, each of which is O(1) (the reference parameters is a pointer,
which is most commonly 8 bytes, and the integer is 4 bytes). So each context on the stack is O(7) and there are n
of these. The answer is therefore O(n).

Bonus Question: If s is not a reference parameter, then a copy of the string will be stored on each stack context.
That means each recursive call consumes O(n) on the stack. The answer is therefore O(n?).

