Clicker Questions

For each of these, please use the following multiple choice answers:

- A: *O*(1)
- B: $O(\log n)$
- C: O(n)
- D: *O*(*n* log *n*)
- E: $O(n^2)$
- **Question 1**: Inserting an element into a multiset with n elements.
- **Question 2**: Inserting n elements into an empty multiset.
- **Question 3**: Inserting n elements into a multiset with n elements.
- **Question 4**: Erasing the first element of a vector with *n* elements.
- **Question 5**: for (i = 0; i < n; i++) for (j = 0; j < i; j++) k++;.
- **Question 6**: Calling **push_back()** on a vector with *n* elements.
- **Question 7**: Creating Pascal's triangle with *n* levels.

Clicker Answers:

Question 1: $B: O(\log n)$: Basic operation on a set/map/multiset/multimap.

Question 2: $D: O(n \log n)$: Just memorize this for now. Actually, you can prove it by using the answer to Question 3 to show that inserting the second half of elements if $O(n \log n)$.

Question 3: *D*: Still $O(n \log n)$. This is easier -- you are doing *n* operations, and each of them is between $O(\log n)$ and $O(\log 2n)$. Since $\log 2n$ is equal to $(\log n)+1$, we have that the *n* operations are bounded by $O(n \log n + n)$, which is $O(n \log n)$.

Question 4: C: O(n): This is why you should never use this method on a vector.

Question 5: E: $1 + 2 + 3 + 4 + ... + n = <math>O(n^2)$.

Question 6: A: O(1): Basic operation on a vector.

Question 7: E: Each level i has i entries -- this is the same as Question 5: $O(n^2)$