Tell me the output of the program
to the right. Put your answer all
on one line -- if there's a newline
in the program's output, simply
replace it with a space, or even no
space. Both will be fine.

So, for example, if the output is:

Then your answer should be
"ABC"or "AB C".

#include <iostream>
using namespace std;

class Fred {

public:
Fred();
Fred(const Fred &f);
~Fred();
}i
Fred::Fred()
{
cout << "A" << endl;
}
Fred::Fred(const Fred &f)
{
cout << "B" << endl;
}
Fred::~Fred()
{
cout << "C" << endl;

}

void procl(Fred f, int i)
{

cout << "X" << endl;

if (i != 0) throw (string)
}

void proc2(const Fred &f)

{

cout << "Y" << endl;

}
int main()
{

Fred £f;

Fred *f2;

try {
procl(f, 0);
proc2(f);
f2 = new Fred;
procl(f, 1);

} catch (const string &s) {
cout << s << endl;
return 0;

}

cout << "F" << endl;

return 0;

"E";




Answer to the Clicker Question

The very first thing that happens is the f's constructor is called, because it has been declared inside main().
That prints "A".

Next "proc1(f,0)" is called. That calls the copy constructor for the parameter. It prints "B".

"proc1(f,0)" prints "X".

"procl(f,0)" tries the if statement, which is false. It returns, calling the destructor for its parameter: "C".
"proc2(f)" is called. It doesn't call a constructor, because its parameter f is a reference parameter. It prints
"Y" and returns.

"f2 = new Fred" is called. That calls the constructor for "Fred". It prints "A"

"procl(f,1)" is called. That calls the copy constructor for the parameter. It prints "B".

"procl(f,1)" prints "X".

"procl(f,1)" throws the exception, which makes the procedure return. Before returning it calls the
destructor for its parameter f: "C".

The exception is caught in the "catch" statement. That prints "E".

The "catch" statement now returns, which calls the destructor for main's f. That prints "C".

You'll note that the destructor for {2 is not called -- you would have to call "delete" for that.

The answeris "AB X CYAB X CE C" or "ABXCYABXCEC".



